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Experimental observations of lightly doped La2−xSrxCuO4, x�0.02, revealed remarkable magnetic proper-
ties such as the incommensurate noncollinear ordering �additional to the Néel ordering� and a tremendous
doping dependence of the uniform longitudinal susceptibility. We show that the spiral solution of the t-t�-
t�-J model obtained by taking into account the Coulomb trapping of holes by Sr ions describes these puzzling
data perfectly well. Our solution firstly explains why the incommensurate structure is directed along the
orthorhombic b axis, and secondly allows a numerical calculation of the positions and shapes of the incom-
mensurate neutron scattering peaks. Thirdly, we calculate the doping dependence of the spin-wave gap, and
lastly, we study the longitudinal magnetic susceptibility and show that its doping dependence is due to the
noncollinearity of the spin spiral.
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I. INTRODUCTION

The phase diagram of La2−xSrxCuO4 �LSCO� shows that
the magnetic state changes drastically with Sr doping. The
three-dimensional antiferromagnetic �AF� Néel order
identified1 below 325 K in the parent compound La2CuO4
�LCO� disappears at doping x�0.02 and gives way to the
so-called spin-glass phase which extends up to x�0.055. In
both the Néel and the spin-glass phase, the system essentially
behaves like an Anderson insulator and exhibits only hop-
ping conductivity. Superconductivity then sets in for doping
x�0.055 �see Ref. 2�. One of the most intriguing properties
of LSCO is the static incommensurate magnetic ordering at
low temperature observed in elastic neutron scattering ex-
periments. Such ordering is a generic feature of LSCO, be-
cause it has been observed in the superconducting phase,3 in
the spin-glass phase,4–6 and in the Néel phase.7 The incom-
mensurate ordering manifests itself as an additional elastic
scattering peak shifted with respect to the AF position: Q
=QAF+�Q, where QAF= �� , ±��, setting the lattice spacing
a equal to one. According to experiments in the underdoped
region 0.055�x�0.12, the shift scales linearly with doping
and is directed along the crystal axes of the square lattice,
�Q�2x�±� ,0� or �Q�2x�0, ±��, see Ref. 3. In the spin-
glass phase, 0.02�x�0.055, the shift also scales linearly
with doping, but it is directed along the orthorhombic b axis,
�Q� ±�2x�� ,−��, see Refs. 4–6. Finally, in the Néel phase
for x�0.02, the incommensurability is almost doping inde-
pendent and directed along the orthorhombic b axis �analo-
gous to the spin-glass phase�, �Q� ±0.02�2�� ,−��, see
Ref. 7. Experimental data for the elastic neutron scattering
probability at x=0.01 and x=0.014 are shown in Fig. 3 of
Ref. 7 �and reproduced in Fig. 7 in this paper�. The extracted
correlation lengths summarized in Table 1 of Ref. 7 clearly
indicate the presence of long-range incommensurate correla-
tions. The correlation length is about 200 Å along the ortho-
rhombic b direction and more than 500 Å along the a direc-
tion. To resolve the small incommensurate peaks in the

background of the huge commensurate peak, the authors of
Ref. 7 used the fact that the scattering amplitude for neutrons
interacting with electron spins is of the form

Tq = ��N� · Bq = 4���N� · ��q −
q��q · q�

q2 � . �1�

Here ��N� is the magnetic moment of the neutron, q the
momentum transfer, and Bq the Fourier transformation of the
magnetic field generated by the magnetization density ��r�,
which in momentum space becomes �q. It is well known2

that due to the Dzyaloshinski-Moriya �DM� interaction, the
commensurate Néel magnetization is directed along the
orthorhombic b axis, ��q�� �1,−1�. If one chooses the mo-
mentum transfer q along this direction, as has been done in
the experiment,7 Eq. �1� shows that in this case, the commen-
surate magnetization does not contribute to the scattering,
which allows one to observe the small incommensurate
peaks. This also clearly indicates that the incommensurate
peaks are due to a noncollinear spin structure, Tq���N� ·�q

�,
inconsistent with any collinear spin stripe picture.

The doping dependence of the DM spin-wave gap in the
Néel state has been measured quite recently.8 The observed
reduction of the gap is clearly due to the loss of Néel order,
which is completely destroyed at 2% doping.

Another remarkable feature of LSCO is the doping depen-
dence of the uniform magnetic susceptibility in the Néel state
at zero temperature. According to Ref. 9, the longitudinal
susceptibility �b changes tremendously already at x=0.01,
while the transverse susceptibilities �a and �c remain practi-
cally unchanged10 compared to the undoped compound.

In the present work, based on the spiral solution of the
extended t-J model,11,12 we explain and calculate the mag-
netic properties described above in the lightly doped Néel
state and show why the incommensurate structure in the in-
sulating state �in both the Néel and the spin-glass phase� is
directed along the orthorhombic b direction.
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The idea of spin-spiral formation in an antiferromagnet
with itinerant particles goes back to Nagaoka13 who noted
that for a sufficiently small superexchange a mobile particle
turns the antiferromagnet into a ferromagnet. In relation to
the t-J model, this idea was formulated by Shraiman and
Siggia,14 who pointed out that for an appreciable superex-
change, it is energetically favorable to allow the collinear
Néel state to relax and form a spiral, in which holes can hop
more easily. For a long time, the issue of stability of the
spiral state remained rather controversial, because of the
negative compressibility of the uniformly doped state.15–20 It
has been demonstrated recently11 that the next-nearest neigh-
bor hopping matrix elements t� and t� are crucially important
for the stability of the uniformly doped state and that the
spiral is indeed stable for physical values of t and t�. In the
uniformly doped state, the spiral is always directed along the
crystal axes of the square lattice. The possibility of spiral
ordering in the insulating spin-glass phase of LSCO has been
pointed out in Ref. 21. In the insulating phase, x�0.055, the
compressibility issue is not important because of the trapping
of holes by Sr ions. Since trapped holes induce a spiral di-
rected along the diagonal of the square lattice,12 the direction
of the incommensurate structure is rotated by 45° at the point
of the percolationlike insulator-superconductor transition. In
addition, the anisotropy of the dc conductivity in the spin-
glass phase22 has been explained and calculated in Ref. 23.

Our paper is organized as follows. We first recall the main
results of the extended t-J model concerning the single-hole
dispersion and the Sr-hole bound state in Sec. II and explain
why the incommensurate spin structure �spin spiral� is di-
rected along the orthorhombic b direction. In Sec. III, we
introduce the effective low-energy Hamiltonian for doped
antiferromagnets within the framework of the nonlinear �
model �NLSM�, which is a very convenient technical tool to
deal with spin degrees of freedom in the t-t�-t�-J model,
especially when taking into account the magnetic anisotro-
pies due to the DM and XY interactions. Numerical simula-
tions of this model, presented in Sec. IV, allow us to study
long-range correlations in the ground state at zero tempera-
ture. A careful comparison between our calculations of the
incommensurate neutron scattering peaks and recent experi-
mental results is contained in Sec. V. The evolution of the
DM induced spin-wave gap upon doping is presented in Sec.
VI. Section VII is then devoted to the doping dependence of
the uniform magnetic susceptibilities and finally, we present
our conclusion in Sec. VIII.

II. THE Sr-HOLE BOUND STATE (“IMPURITY”)
AND PINNING OF THE SPIRAL DIRECTION

TO THE ORTHORHOMBIC b AXIS

Over a decade ago, the two-dimensional �2D� t-J model
was suggested to describe the essential low-energy physics
of high-Tc cuprates.24–26 In its extended version, this model
includes additional hopping matrix elements t� and t� to
next-nearest neighbors. The Hamiltonian of the model is well
known, see, e.g., Ref. 11, and we do not present it here. The
numerical values of the parameters of the t-t�-t�-J model
corresponding to LSCO follow from Raman spectroscopy27

and ab initio calculations.28 It is convenient to measure all
energies in units of J, i.e., we set J=125 meV→1 and obtain
t=3.1, t�=−0.5, and t�=0.3. At zero doping �no holes�, the
extended t-J model is equivalent to the Heisenberg model
and describes the Mott insulator LCO. Removal of a single
electron from this Mott insulator, or in other words injection
of a hole, allows the charge carrier to propagate. Single-hole
properties of the t-J model are well understood.29 The main
features are a very flat dispersion along the edges of the
magnetic Brillouin zone �MBZ� with four degenerate half-
pockets centered at S= �±� /2 , ±� /2�. The quasiparticle resi-
due at the minimum of the dispersion is Z�0.3. In the full-
pocket description, where two half-pockets are shifted by the
AF vector QAF, the two minima are located at Sa
= �� /2 ,� /2� and Sb= �� /2 ,−� /2�, see Fig. 1�b�. The system
is thus similar to a two-valley semiconductor.

Let us now consider a single hole trapped by the Coulomb
potential of the Sr ion and refer to this bound state as the
“impurity.” Since such an “impurity” is an intrinsic part of
LSCO, the word could be misleading and we therefore use
quotation marks to avoid confusion. An “impurity” has a
hydrogenlike structure. In coordinate space, one part of the
hole wave function corresponds to the 1s bound state and
depends smoothly on r, while a second part, dictated by the
Bloch theorem, is rapidly varying with r and different for
holes located near Sa or Sb. A pseudospin finally indicates if
the hole sits on the ↑ or ↓ sublattice. The ground state can
therefore be described by two quantum numbers, the hole-
pocket and the pseudospin associated with the sublattice. In
this case, the bound state in the tetragonal phase is fourfold
degenerate 	1sa↑ ,1sa↓ ,1sb↑ ,1sb↓
. However, in the low-
temperature orthorhombic phase of LSCO we are interested
in, the orthorhombic b direction is slightly longer than the a
direction, as illustrated in Fig. 1�a�, a=5.349 Å and b
=5.430 Å, see, e.g., Ref. 2. To first order, this distortion only
influences the diagonal hopping matrix element t�, whose
contribution to the dispersion is equal to

�q = Zta��e
iqx+iqy + H.c.� + Ztb��e

−iqx+iqy + H.c.� .

FIG. 1. �a� Schematic drawings of a CuO2 plane in the tetrago-
nal and orthorhombic phase. �b� Reciprocal lattice with tetragonal
and orthorhombic �for simplicity shown without distortion� unit
vectors. Due to the orthorhombic distortion, holes around Sb

= �� /2 ,−� /2� have lower energy and the spirals induced by these
holes are directed along the orthorhombic b direction. This leads to
the incommensurate magnetic peaks shown as small open circles.
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Using the estimations ta�= t��1/a and tb��1/b, it is easy to
see that the degeneracy associated with the pockets is lifted
and holes in the vicinity of Sb have slightly lower energy

	� = �Sa
− �Sb

= 4Z�tb� − ta�� � 4Zt��a/b − 1� � 1 meV.

�2�

The bound state is thus only doubly degenerate 	1sb↑ ,1sb↓
.
The spiral formed by the trapped hole �“impurity”� is or-
thogonal to the corresponding face of the MBZ.12 Hence this
immediately explains why, in the orthorhombic phase, spirals
are directed along the b direction. This consideration is
equally applicable to both the Néel and the spin-glass phases.
The spiral pinning energy is given by Epin�
2x	�, x being
the hole concentration and 
 the correlation length in units of
lattice spacings. The correlation length is anisotropic and
temperature dependent, and due to frustration it remains fi-
nite, even at zero temperature, see Ref. 12. Using the experi-
mental value30 at x�0.02 obtained at T=1.6 K, 
2�138,
one finds Epin�3 meV�35 K. We would like to emphasize
that Eq. �2� only provides a crude estimate, an accurate local-
density approximation �LDA� calculation of tb� and ta� is nec-
essary to determine the precise value of 	�.

III. EFFECTIVE LOW-ENERGY HAMILTONIAN
OF THE DOPED ANTIFERROMAGNET:

THE NLSM APPROACH

The NLSM is a very convenient tool to describe the low-
energy dynamics of the weakly doped t-J model, represent-
ing underdoped cuprates. In this framework, the staggered
component of the copper spins located in a single layer of
LSCO is represented by a continuous vector field n��r� of unit
length n��r�2=1. To avoid confusion, we denote vectors act-
ing in the three-dimensional �3D� spin space by arrows and
vectors acting in the 2D coordinate space by the usual bold
font. Throughout this paper, we adopt the orthorhombic co-
ordinate system shown in Fig. 1, with unit vectors e��, �
=a ,b ,c. Coordinate and spin space are linked through the
pinning of the commensurate Néel magnetization to the
orthorhombic b axis. It is therefore convenient to use the
same coordinate system in both cases with real space unit
vectors e�=e��.

An elegant way to incorporate the DM and XY anisotro-
pies in the NLSM, crucially important for an accurate de-
scription of the Néel state of LSCO, has been proposed quite
recently by Silva Neto et al. In the static limit, the energy of
the spin system reads31

En =
��

2
� d2r	c2
�n��r��2 + 
D� · n��r��2 + �cnc

2�r�
 . �3�

Here ���0.065 is the magnetic susceptibility of the Heisen-
berg model, c=�
s /���1.66 the spin-wave velocity and

s�0.18 is the spin stiffness. The anisotropies are due to the
DM interaction, with a DM vector directed along the ortho-

rhombic a direction D� �0.02e�a, and the XY term, which
leads to ��c�0.04.

The trapped hole has a hydrogenlike ground state wave
function

��r� = ���r� = �� 2

�
�e−�r,

where � is a two-component spinor �independent of r� de-
scribing the pseudospin. Note that according to the previous
section the hole resides in the Sb hole pocket; however, we
do not write this index explicitly in the wave function. The
value of � slightly depends on doping. It decreases with in-
creasing doping, because of the Coulomb screening. Accord-
ing to data on hopping conductivity32 ��0.3–0.4 at x
=0.002 and very recent preliminary data taken at x=0.03
indicate33 that ��0.2. The hole energy inside the “impurity”
can be written as

E� =� d2r�†�r��− �
�2

2
−

e2

�er
���r� , �4�

where ��2 is the inverse mass of the trapped hole,11 and �e
is the effective dielectric constant. Strictly speaking, one has
to write the Coulomb energy as e2 / ��e

�d2+r2�, where d
�2 Å is the distance from the CuO2 plane to the Sr ion, but
since r�d one can safely neglect the d2 term.

The interaction energy of a hole with the spin degrees of
freedom reads12

E�n = �2g� d2r
n��r� � �†�r��� ��r���e · ��n��r� . �5�

Here e is a unit vector orthogonal to the face of the MBZ,
e=eb, since the hole resides in the Sb hole pocket and �� are
the Pauli matrices. The coupling constant g�Zt�1 has been
calculated previously11,18 within the t-t�-t�-J model.

The restriction to the lightly doped Néel phase allows us
to expand the n�-field around the dominating commensurate
order directed along the b axis

n��r� = e�b + �� �r� = e�b + �
�=a,c

���r�e��, �6�

where �� is a small vector field orthogonal to the b direction,
i.e., �� 2�1. Using this approximation, the total energy of a
system with N “impurities” can be expressed as

E = En + E� + E�n

=� d2r� 
s

2 �
�=a,c

	
����r��2 + M�
2
���r��2


+ �2g�
i=1

N


�r − ri�m� i�e · ���� �r�� + E0, �7�

where m� i=e�b� ��i
†�� �i� are the directors of the “impurities,”

�m� i�=1, 
�r�=�2�r�, and E0=N���2 /2−2�e2�. Since E0 is
independent of m� i and �� , it only leads to a shift in energy
which can be safely omitted for the purpose of the present
work. The “masses” follow from �3�,

Ma = D/c = 0.012 and Mc = ��c/c = 0.024.

Note that this definition of the “masses” differs from the
standard one by a factor of 1 /c.
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A. Solution for an isolated “impurity”

Let us for clarity reasons introduce a special notation for

the single “impurity” problem and use the vector field �� in-
stead of �� in this case, i.e., analogous to the definition �6�,
we use

n��r� = e�b + ���r� = e�b + �
�=a,c

���r�e��,

and assume ��2�1. According to Ref. 12, the single “impu-
rity” solution which minimizes the total energy �7� satisfies
the equation

�− 	 + M�
2����r� − m�M�e · ��
�r� = 0. �8�

Here m� is the � component of the director m� , and M
=�2g /
s�8 is the effective dipole moment of the “impu-
rity.”

The solution of Eq. �8� in coordinate and momentum rep-
resentation reads

���r� = m�
M
2�

e · r

r2 	�1 + 2�r�e−2�r − M�rK1�M�r�
 ,

�q
� = m�M ie · q

q2 + M�
2 
q, �9�

where K1 is a modified Bessel function of the second kind
and we make use of the fact that M���. The Fourier trans-
formation 
q of 
�r� is given by


q =
8�3

�4�2 + q2�3/2 � 1 �q � �� . �10�

The above solutions are valid in the case of an isolated
copper-oxide plane.

Influence of neighboring CuO2 planes

Let us consider the modification of the solution �9� due to
the interaction with other copper-oxide planes. The energy
spectrum of spin waves in LCO reads34

��qx,qy,qz� = 2.32J��1 + ��/2�2 − ��� + ����/2�2,

�� =
1

2
�cos qx + cos qy�, �� = cos qz.

Here ���5�10−5 describes the superexchange between the
planes. We disregard DM and XY anisotropies, because they
are already taken into account in the effective NLSM. Incor-
porating the qz dependence of this spectrum in Eq. �9� in the
limit where q= �qx ,qy� is small, we get

�̃��q,qz� �
1

qx
2 + qy

2 + 4�� sin2�qz/2� + M�
2 . �11�

In order to find an effective expression of �11� in the single-
layer approximation used to derive Eq. �9�, we integrate �11�
over all momenta qz and obtain

�q
� �

1

�
�

0

� dqz

qx
2 + qy

2 + 4�� sin2�qz/2� + M�
2

=
1

��qx
2 + qy

2 + M�
2��4�� + qx

2 + qy
2 + M�

2�
,

which can be approximated by the original expression �9�
with the substitution of an effective mass

M� → M�
eff = M��1 +

4��

M�
2 �1/4

,

i.e., Ma
eff=0.015 and Mc

eff=0.026. We use these values for
further calculations.

B. Solution for multiple “impurities”

It is straightforward to generalize the single “impurity”
solution �9� to a system consisting of N “impurities.” Be-
cause of the assumption �� 2�1, the �� field is the linear su-
perposition of N independent local spirals

�� �r� = �
�=a,c

�
i=1

N

�i
��r − ri�e��, �12�

where ���r� is the single “impurity” solution given by Eq.
�9�.

As already pointed out in Ref. 12, the single “impurity”
solution is degenerate with respect to the orientation of the
director m� , since minimizing the total energy �7� only en-

forces the �� field to be parallel to m� . This degeneracy is lifted
by the interaction with other “impurities.” Having N holes
trapped by N Sr ions, one can calculate the effective interac-
tion energy between “impurities” due to perturbation of the
NLSM in the limit where the distance r between two “impu-
rities” is sufficiently large, r= �ri−r j��1/��3. Let us sub-
stitute �12� in the total energy �7� and split the result into an
effective interaction energy U �containing contributions i
� j� and a self-energy � �arising from contributions i= j�.
Omitting terms independent of m� , which just shift the energy,
we find

E = U + � = �
�=a,c

�
i�j

N

Ui,j
� + �

�=a,c
�

i

N

�i
�, �13�

where

Uij
� =


sM2

4�
M�

2mi
�mj

���ei · e j�K0�M�r�

− ��ei · e j� −
2�ei · r��e j · r�

r2 �K2�M�r�� , �14�

with the modified Bessel functions Kn, and

�i
� =


sM2

8�
M�

2�mi
��2 ln� �

M�
� . �15�

For M�→0, Eq. �14� agrees with Refs. 21, 35, and 36. We
would like to stress that even though the interaction �14�
looks similar to the usual electrostatic dipole-dipole interac-
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tion, it is substantially different: Firstly, the dipole director
m� i which determines the polarization of the spiral is decou-
pled from the vector ei which determines the direction of the
spiral. Secondly, the sign of �14� is opposite to what one
naively expects from the analogy to electrostatics; and
thirdly, the interaction is of finite range due to nonzero
masses. Although the self-energy �15� is proportional to M�

2

and therefore small numerically, our results presented in Sec.
IV show that its contribution is crucially important and leads
to an alignment of the “impurity” directors m� i along the a
direction, because Ma�Mc.

“Molecular impurities”

The effective interaction �14� is valid for “impurities”
separated by a distance r�1/�. In this case, the orthorhom-
bic distortion favors holes to reside in the vicinity of Sb, and
the vectors ei in �14� are all directed along the b axis, i.e.,
ei=eb. However, as soon as two “impurities” are sitting very
close to each other, the holes can no longer be treated as
independent particles but have to obey the Pauli exclusion
principle, as explained in Ref. 12. In order to elucidate this
mechanism in more detail, it is convenient to distinguish
between “atomic” and “molecular impurities”: an “atomic
impurity” is just a redefinition of the bound state formed by
a Sr ion and the trapped hole �in analogy with the hydrogen
atom�, whereas a “molecule” describes two or more “atomic
impurities” with noticeably overlapping hole wave functions.
The formation of “molecules” is entirely due to the Pauli
blocking: For two or more well separated “atomic impuri-
ties”, the Pauli exclusion principle does not apply and the
orthorhombic distortion favors holes residing in the pocket
centered at Sb. But as soon as “atomic impurity” wave func-
tions have a non-negligible overlap, the Pauli blocking sets
in and two holes in the same hole pocket must have opposite
pseudospins, which prevents the formation of a local spiral
and therefore does not lead to a gain in energy. In this situ-
ation, it will be energetically favorable to place the holes in
different pockets, which, due to the orthorhombic distortion,
costs an energy 	��1 meV �2� but allows the formation of
a local spiral.12 For parallel alignment of the “impurity” di-
rectors this gain in energy is of about 3–5 meV. A “mol-
ecule” can therefore be represented by the director m� and the
vector e=ea±eb, since it is a superposition of two holes in
pockets Sa and Sb with two times the self-energy �15� of an
“atomic impurity.” The critical distance between “atomic im-
purities”, below which “molecules” are formed, is not well
defined. Clearly, it is smaller than the average distance be-
tween “impurities” at the insulator-superconductor transition
�percolation� at doping x=0.055, i.e., rc�1/�x�4.3 lattice
spacings. Although the formation of “molecules” is crucially
important to explain the jump of the incommensurability di-
rection at the insulator-superconductor transition,12 it is neg-
ligible in the lightly doped Néel phase considered in this
work. For instance, for rc=2 at doping x=0.01 only 6% of
the “impurities” form “molecules”—a contribution which
can be safely neglected. This conclusion is supported by ex-
tensive numerical simulations for rc�3 lattice spacings,
which do not indicate any modifications due to “molecules.”

IV. GROUND STATE AND CORRELATION FUNCTIONS

Let us now investigate the properties of the zero-
temperature ground state of the system. The basic assump-
tion behind the derivation of the effective interaction �13� is
the existence of a dominating commensurate Néel order �6�,
which restricts our analysis to the low-doping situation x
�0.02. From a technical point of view, the Hamiltonian �13�
represents a set of interacting dipoles m� i. In the static limit,
where any kinetic energy terms are absent, we are dealing
with a classical problem. This classical approximation is jus-
tified by the large value of the effective dipole moment M
�8 and by the long-range character of the interaction. In
order to describe realistic experimental situations, with
samples of LSCO consisting of many copper-oxide layers,
each of them containing a random arrangement of “impuri-
ties” and all of them contributing to the measurement, we
have to average the quantities we calculate over many differ-
ent realizations of random dipole positions. To find the
ground state of the Hamiltonian �13�, we perform classical
zero-temperature Monte Carlo simulations with up to N
=200 randomly distributed dipoles on a square lattice. These
dipoles are separated by an average distance l=1/�x lattice
spacings. In accordance with the previous discussion of the
spiral direction pinning, we set ei=eb. Our results clearly
indicate that the self-energy term �15� leads to a pinning of
the dipoles along the orthorhombic a direction, m� i� ±e�a, be-
cause of the smaller mass. This effect allows us to divide the
task of finding the ground state into two parts: in a first step,
we only consider the Ising-like situation, where all dipoles
are aligned along the a axis. Starting from random initial
conditions, we find the ground state of a given realization by
exactly minimizing clusters of eight dipoles at a time. Our
algorithm generates random walks through the system and
forms the clusters at a given site according to the strength of
the interaction �14� with neighboring dipoles. The total en-
ergy is then minimized with respect to the dipoles in this
cluster and the algorithm proceeds to the next site of the
walk. In a second step, we perturbate this collinear arrange-
ment and allow the dipoles to relax and have a nonzero com-
ponent along the c direction. We find that for a given number
of realizations, the percentage of ground states with noncol-
linear dipole alignment decreases with increasing system
sizes. However, this observation could very well be influ-
enced by the difficulty of finding the optimal noncollinear
dipole arrangement in larger systems.

A typical ground state configuration for a given realiza-
tion of random dipole positions at x=0.01 is shown in Fig. 2.
One clearly identifies domains with parallel dipole align-
ments. The size of these domains along the a direction is
substantially larger than along the b direction. This picture
also reflects the ferromagnetic �antiferromagnetic� character
of the dipole-dipole interaction �14� in the a direction �b
direction�. Having found the ground state of a given realiza-
tion in terms of the “impurity” directors m� , one can easily
calculate the resulting n� field, using Eqs. �6�, �12�, and �9�.
As an example, Figs. 3�a� and 3�b� show the n� field derived
from the ground state dipole arrangement for dopings x
=0.005 and x=0.014, respectively. For readability, we only
show a small part of these systems, where “impurities” are
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represented by filled circles. One can see that the initially
dominating orientation along the b direction becomes weaker
with increasing doping.

In order to characterize the ground state, we define a cor-
relation function, closely related to the neutron scattering
cross section 
see Eq. �17� in the following section�,

Dq
� =

1

N
�
i,j

mi
�mj

�eiq·�ri−rj�. �16�

Due to the very strong pinning of the dipoles along the a
direction, their c components are negligible and the corre-
sponding correlations vanish, i.e., Dc�q�=0. The asymptotic
behavior is thus given by Da�q�→1 for q→�. The common

feature of Dq
a, obtained for different hole concentrations x is

a pronounced peak centered on the orthorhombic b axis, as
shown in Fig. 4 for x=0.01. The statistical average of Dq

a is
obtained from 200 realizations of random dipole distribu-
tions in systems with L=141�141 sites and N=200 “impu-
rities.” Statistical fluctuations are negligible compared to
these well-pronounced incommensurate peaks, which are
manifestations of the dipole domains shown in Fig. 2. A
density plot of Da�q� �same data as Fig. 4� shown in Fig. 5
reveals the anisotropy of the peaks. The width along the b
direction is around twice as large as along the a direction.
Most likely, we slightly overestimate the width in the b di-
rection and substantially overestimate the width in the a di-
rection due to finite-size effects. The substantial underesti-
mation of the correlation length �inversly proportional to the
width of the peak� along the a direction is clearly illustrated
in Fig. 2. The size of the domain along the a direction is
comparable to the size of the lattice. Unfortunately, the con-
vergence of our Monte Carlo procedure is getting very slow
when simulating larger systems, so that we are limited to this
size. In Fig. 6, we show slices through the maximum of the
peaks parallel to the b axis. In this lightly doped regime, the
correlation length 
b clearly decreases with increasing dop-
ing. Note that the correlations length extracted from neutron
scattering experiments7 cannot be directly compared to the
dipole-dipole correlations Dq

� �16�, because the neutron scat-
tering cross section is the product of the correlator with the
single-dipole contribution, see Eq. �17� in the following
section.

V. INCOMMENSURATE NEUTRON SCATTERING PEAKS

As explained in the Introduction, the experimental
conditions7 are such as neutrons only interact with the pro-
jections of electron spins orthogonal to the b axis, which in
terms of the NLSM is just the �� field. Using Eqs. �12�, �9�,

FIG. 2. Example of a ground state dipole arrangement for 1%
doping. The dipoles form clusters stretched along the orthorhombic
a direction.

FIG. 3. n� fields derived from two realizations of random impurity distributions at dopings x=0.005 �a� and x=0.014 �b�. Both systems
consist of L=60�60 sites and contain N=18 and N=50 dipoles, respectively. For readability, only a characteristic part of these systems is
shown, with circles denoting the positions of “impurities.” Spin and coordinate space are linked by the pinning of the commensurate
magnetization along the orthorhombic b direction. Clearly, doped holes lead to a destruction of Néel order, experimentally observed at
x=0.02.
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and �16�, we find the following neutron scattering cross
section:

�Tq�2 � ��� q
��2 � ��� q�2 = x� �

�=a,c
Gq

�Dq
�, �17�

where � is the area of the sample and Gq
� is the single-dipole

contribution given by

Gq
� = M2 �q · eb�2

�q2 + M�
2�2
q

2 . �18�

Experimental results are available for 1%, 1.4%, and 1.8%
doping, shown in Fig. 3 of Ref. 7 and reproduced in Fig. 7.
Since we assume the presence of a dominant Néel order, our
results are reliable only at small doping, far from the transi-
tion to the spin-glass phase. We therefore only consider x
=0.01 and x=0.014. It is explained in Ref. 7 that the small

asymmetry experimentally observed for 1.4% doping 
Fig.
7�b�� arises due to different twinning directions �there are
four possible equivalent orthorhombic distortions of the te-
tragonal lattice� present in the crystal. Equation �17� clearly
shows that the incommensurate peak observed in neutron
scattering is due to two effects, because it is the product of
the single-dipole contribution Gq

a with the correlation func-
tion Dq

a. In the limit of noninteracting dipoles the correlator
is trivial, Dq

a =1, and hence the maximum of the neutron

FIG. 4. �Color online� Normalized correlation function Dq
a ob-

tained from ground states of model �13� for systems with L=141
�141 sites and N=200 �x=0.01� “impurities.” The statistical aver-
age is taken over 200 realizations. Due to the pinning along the a
direction, Dq

c =0.

FIG. 5. Density plot of Dq
a shown in Fig. 4. The plot clearly

reveals the asymmetry of the incommensurate peaks. The width
along the b direction is around twice as large as along the a axis.

FIG. 6. �Color online� Slices of the normalized correlator Dq
a

along the b direction for three different dopings. The widths of the
peaks clearly increase with increasing doping.

FIG. 7. Neutron scattering probability for x=0.01 and x=0.014.
The dots correspond to experimental observations taken from Fig. 3
in Ref. 7, with normalized intensity. The curves represent our simu-
lations convoluted with a Gaussian to take into account the finite
experimental resolution. The agreement between simulations �con-
taining no fitting parameters at all� and experiments is remarkable.
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peak, solely determined by the smaller mass, is found at q
=Ma. However in the case of interacting dipoles, there is a
second, much broader peak in the correlation function Dq

a

which has to be taken into account. Figure 8 clearly shows
that neither of the two contributions alone is sufficient to
characterize the resulting neutron scattering cross section.
Only the product �17� gives the right answer. In order to
compare our results with experiments, we take into account
the finite experimental resolution by a convolution with a
Gaussian of half-width �resol=0.005. This convolution only
leads to a nonzero value at q=0 but does not have any influ-
ence on the positions and the widths of the peaks, as illus-
trated in Fig. 8. A comparison with experiments, presented in
Fig. 7, shows that our simulations are in remarkable agree-
ment with experimental observations, especially considering
the fact that these curves do not contain any fitting param-
eters. Although the finite-size effects encountered in our
simulations influence the correlator Dq

a �see Sec. IV�, they
are practically absent in the neutron scattering cross section.
Simulations of systems with 140 dipoles �not shown� lead to
almost identical curves in Fig. 7.

VI. DOPING DEPENDENCE OF THE ZERO MOMENTUM
DM SPIN-WAVE GAP

Gozar and co-workers8 have recently measured the DM
induced spin-wave gap in LSCO at zero momentum using
Raman scattering. Their result for zero doping 	DM =D
�17.4 cm−1�2.2 meV agrees reasonably well with the
value D�2.5 meV known from neutron scattering.37 Ac-
cording to Ref. 8, the gap is reduced by 28% to 	DM
�12.5 cm−1 at 1% doping. As one should expect, the gap
vanishes at x=0.02, where the Néel order is completely de-
stroyed. Since our approach relies on the existence of an
ordered state, it does not allow us to describe the transition to

the spin-glass phase at x=0.02, but for x=0.01 the approxi-
mation is well justified.

Since the anisotropy due to the DM interaction D is inde-
pendent of doping, the relation 	DM =D=cMa is only valid at
zero doping. In order to determine the spin-wave gap at finite
doping, we consider an excitation with zero momentum.
In the framework of the NLSM, the ground state of the
Hamiltonian �7� can be represented as n� = �na ,nb ,nc�
= �sin
�a�r�� , cos
�a�r�� ,0�, with the �� field found in the
previous sections. Since this vector field is small, �a�1, one
can expand the trigonometric functions in powers of �a. In
order to preserve rotational symmetry, we expand only the
final answer and use the exact expression in our calculations.
A zero momentum excitation corresponds to a global rotation
of the ground state n� field by an angle ��1,

n��r� → n��r,t� = �sin
�a�r� + ��t��,cos
�a�r� + ��t��,0� .

� depends on time, but it is space independent, because it
describes a global rotation. The Lagrangian of the system
consists of the usual kinetic term, proportional to ��tn��2, and
the potential energy E�n��

L =� d2r���

2
��tn��2 − E�n���

→� d2r���

2
�̇2 −


s

2
�Ma

2na
2 + Mc

2nc
2�� . �19�

Without anisotropies, i.e., M�=0, the system is rotationally
invariant and the potential energy therefore independent of
the uniform rotation � �Goldstone theorem�. Only the mass
terms break the O�3� symmetry and we thus restrict the La-
grangian �19� to these terms. The anisotropy in c direction is
irrelevant, because n� has no c component. Expanding the Ma
term in �19� in powers of � �omitting zeroth order terms�,
one finds

−

s

2
Ma

2� na
2d2r = − �2
s

2
Ma

2� cos
2�a�r��d2r .

The contribution linear in � disappears, because
�sin
2�a�r��d2r=0. The Euler-Lagrange equation of motion
reads

����̈�t� = − �
sMa
2� cos
2�a�r��d2r

� − �
sMa
2��1 − 2�� , �20�

where � is the area of the sample, and

� =
1

�
� d2r
�a�r��2 =

1

�
� d2q

�2��2 ��q
a�2 = x� d2q

�2��2Gq
aDq

a .

�21�

In order to obtain this last expression, we expanded the right-
hand side of �20� in powers of the static field �a and also
used Eq. �17�. The solution of Eq. �20� gives the frequency
corresponding to the gap resonance

FIG. 8. �Color online� Normalized neutron scattering cross sec-
tion along the orthorhombic b axis for x=0.01. According to Eq.
�17�, Gq

a �a� represents the single-dipole contribution and Dq
a �b� the

dipole-dipole correlation function. Neither of these contributions
alone is sufficient to characterize the resulting cross section �Tq�2 �c�
given by their product. For comparison with experiments, we con-
volute �Tq�2 with a Gaussian to take into account the finite experi-
mental resolution �d�. Note that all quantities are normalized to
unity.
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	DM = cMa�1 − �� . �22�

In the limit of noninteracting dipoles, Dq
a =1, � can be cal-

culated analytically. Using Eqs. �21�, �18�, and �10� one finds
�=x�M2 /4��
ln�2� /Ma�−5/4��13x. However, the inter-
action of dipoles is very important. Using the correlator Dq

a

found in Sec. IV in the numerical integration of �21�, we find
that ��25.5x. At x=0.01, this gives a 26% reduction of the
gap, in very good agreement with the experimental value of
28%. Note that � determines the average angle of spin de-
viation from the b direction, �2=� �see Fig. 3�. Thus at x
=0.01, the root mean square value of the angle is �rms
�0.5 rad.

The reduction of the DM spin-wave gap upon doping has
recently been considered in Ref. 38. Their approach38 is
based on the introduction of an effective phenomenological
Lagrangian for the “dipolar field”. Our detailed numerical
simulations show that the dynamics of the dipoles are mainly
diffusive, so it is impossible to introduce such an effective
Lagrangian. In addition, the authors38 suggest a helical spin
structure for 0.02�x�0.055. Our results do not support this
scenario. At least in the Néel phase, the spins remain con-
fined to the ab plane �apart from a small DM canting� and we
expect the same for the spin-glass phase.

VII. UNIFORM MAGNETIC SUSCEPTIBILITIES

The magnetic susceptibility of undoped LCO, including
its temperature dependence, is well understood39 �see also a
recent work by Silva Neto et al.31�. There are four mecha-
nisms that contribute to the magnetic susceptibility of LCO:
�1� isotropic atomic core diamagnetism, �2� anisotropic van
Vleck paramagnetism, �3� anisotropic quantum Heisenberg
model paramagnetism, and �4� anisotropic paramagnetism
related to the relativistic DM interaction. In the present work,
we consider the doping dependence of the uniform suscepti-
bilities at zero temperature. Due to the anisotropies, there are
three different susceptibilities, �a, �b, and �c, corresponding
to directions of the magnetic field along the a, b, and c axes,
respectively.

The magnetic susceptibilities of lightly doped LSCO have
been measured by Lavrov et al.9 Figure 1 of Ref. 9 clearly
shows that their doping dependence is strongly anisotropic:
�a and �c change only slightly with doping,10 whereas �b
varies from about 1.7�10−7 emu/g at x=0 to 4
�10−7 emu/g at x=0.01. In comparison, the perpendicular
susceptibility of the Heisenberg model is equal to

�� � 0.5/�8J� →
�gs�B�2

16J
→ 1.6 � 10−7 emu/g.

Here we have restored the gyromagnetic ratio, gs�2, and the
Bohr magneton �B �throughout this paper, we use units
where gs�B=1� and substituted the real density of the com-
pound. The variation of the longitudinal susceptibility �b �it
is longitudinal because the field is directed along the Néel
direction� at a tiny 1% doping is comparable or even slightly
larger than ��. Similar to the neutron scattering considered
in the previous sections, this is an indication of a noncol-
linear spin structure.

In the absence of a magnetic field, the Hamiltonian of the
system is given by Eqs. �3�–�5�. The additional terms de-
scribing the interaction with the magnetic field read

EB = EBn + EB�
�1� + EB�

�2� , �23�

with

EBn = −
��

2
� d2r
�n� � B� �2 − 2B� · �D � n��� ,

EB�
�1� = −

1

2
� d2r��†�� · n����B� · n�� ,

EB�
�2� =

g

2�2
� d2r�†�� 	e · p,B� − n��B� · n��
� , �24�

where 	,
 stands for the anticommutator, p=−i� and we set
gs�B=1. Note that the field n� and the spinor � are functions
of r. The first term in EBn is the usual magnetic interaction in
the NLSM �Refs. 40 and 41� and the second term is due to
the DM induced weak ferromagnetism.31,39

EB�
�1� describes the interaction between the hole and the

component of the magnetic field parallel to the local direc-
tion of the n� field. The physical origin of this term is very
simple. In the Heisenberg model �undoped case�, the projec-
tion of the total spin along n� is zero, because electrons with
spin “up” are compensated by electrons with spin “down.”
For nonzero doping, “up” and “down” spins no longer com-
pensate and therefore lead to a nonzero spin projection along
n� . This spin interacts in the usual �Zeeman� way with the
magnetic field. For example, �†�� ·n��= +1 implies that the
hole is created on the ↑ sublattice and hence 	Sn= +1.

The origin of EB�
�2� is more delicate. This term describes

the interaction between the hole and the component of the
magnetic field orthogonal to the local direction of n� . The
physical origin of this interaction is the following: the locally
transverse magnetic field tilts the spins in the antiferromag-
netic background, which allows the holes to hop more easily
and therefore leads to a gain in kinetic energy. This is why
the EB�

�2� term contains the momentum, p=−i�, and is propor-
tional to the hopping matrix element g=Zt. To derive the
coefficient in EB�

�2�, one has to calculate the gain in the kinetic
energy and then expand it for a hole localized in a particular
pocket, q= �±� /2 , ±� /2�+p. This is why the unit vector e,
orthogonal to the corresponding face of the MBZ, appears
in this expression. However, because in the problems we
consider, momenta are always small, p�1, we can safely
neglect the EB�

�2� term. We nevertheless present the term in
Eqs. �23� and �24� for the sake of completeness and for fu-
ture studies.

To the best of our knowledge, the interaction between the
hole and the magnetic field has never been written in the
form �24� before. It is therefore useful to convince oneself of
its validity by recalculating a well-known result. A nice ex-
ample is the calculation of the perpendicular susceptibility of
a single immobile hole in a quantum antiferromagnet.42,43
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Since the hole is located on a particular site of the lattice,
�†�� ·n��= ±��r�, and because g=0 �no hopping�, the total
energy reads


s

2
� d2r�
����r��2 + M2
��2�r��2 �

1


s
B� · ���r���r�� .

Here the terms in square brackets are due to Eq. �7�, and the
last term is due to EB�

�1� in �24�. Variation of the energy with

respect to �� yields

�− 	 + M2����r� = ±
B�

2
s
��r� ,

which in momentum representation has the solution

��q = ±
B�

2
s

1

q2 + M2 .

Substituting this solution in the total energy and using the
ultraviolet regularization r 1 lattice spacing, i.e., q�1,
then immediately yields the “impurity” susceptibility

�imp =
1

8�
s
ln� 1

M
� ,

which agrees with previous results obtained by different
methods.42,43

Let us now turn to the realistic situation of LSCO, where
mobile holes are trapped by Sr ions �“impurities”�. To calcu-
late the susceptibility, it is sufficient to consider a single
“impurity” and then multiply the result by the concentration
x, because the interaction of “impurities” considered in Secs.
III and IV gives corrections of second and higher order in
doping, which we cannot calculate without uncontrolled ap-
proximations 
see also comment below Eq. �28��. In what
follows, we set Ma=0 everywhere except in the logarithmi-
cally divergent integrals, where we use it as an infrared cut-
off. Accordingly, the term involving D in Eq. �24� is also
ignored.

A. Longitudinal magnetic field, �b

In the case of a longitudinal magnetic field B� =Be�b, the
“impurity” energy is given by Eqs. �7�, �23�, and �24�,

E =
1

2
� d2r	
s
����r��2 + 2�2g
�r�
e�b � d���eb · �����r�

− ��B2
���r��2 − B
d� + d�� · ���r��
�r�
 , �25�

where we represent the vector d� =�†�� � as d� =d�e�b+d��.

Variation of the energy with respect to �� yields

− 	���r� − �M�e�b � d����eb · �� +
Bd��

2
s
�
�r� = 0.

In momentum representation, the solution of this equation
reads

��q = �iM�e�b � d���eb · q +
Bd��

2
s
�
q

q2 , �26�

where the first term, which is independent of the magnetic
field B, coincides with �9�. Note that analogous to neglecting
the mass terms, we also omit the ��B2�2 contribution in the
solution �26�, because it only leads to a small modification of
the infrared cutoff. Substitution of this solution in the total
energy �25� yields

E = − �d��2� B2

4�
s
�1

4
+

��g2


s
�ln�0.6�

Ma
� +

g2

4�
s
�2� − d� B

2
,

�27�

with the kinematical constraint �d��2+ �d��2=1. The energy is
minimized for a nonzero d�, i.e., a longitudinal magnetic field

leads to a squeezing of m� =e�b�d� . The minimum is obtained
for

d� �
�
s

g2�2B .

Substitution of this expression in �27� gives the “impurity”
energy and allows us to find the “impurity” susceptibility.
After multiplication by the hole concentration x, we find the
following variation of the bulk susceptibility

��b = �� c2

8�
s
2 +

g2

2�
s
2�ln�0.6�

M
� +

�c2

2g2�2�x�� � 100x��.

�28�

The last term in the above expression is the most important
one. Depending on the value of �, it gives 80%–90% of the
total result. From data on hopping conductivity,32,33 we know
that 0.2!�!0.3. Evaluation of Eq. �28� for �=0.3 gives
��b�75x�� and with �=0.2, we find ��b�130x��. Similar
to the uncertainty in �, there is also some variability in the
coupling constant g. According to Refs. 11 and 18, we take
g�1, but we believe that g�1±0.2 is quite possible. De-
spite these uncertainties, our result unambiguously shows
that there is a huge doping dependent variation of the longi-
tudinal susceptibility due to the noncollinear spin structure of
the spiral. Our estimation of ��b is in excellent agreement
with experimental data.9 We would like to emphasize that
Eq. �28� has been derived in the fully controlled linear in x
approximation. Unfortunately, higher order doping terms
cannot be calculated without uncontrolled approximations.
Equation �28� is therefore justified when x is well below the
transition to the spin-glass phase at x=0.02. Since our results
on neutron and Raman scattering are also derived in the lin-
ear in x approximation, and we know from comparison with
experiments that they are valid up to x�0.015, we expect
Eqs. �28� and �31� to be valid in this region as well. In
contrast to this huge modification of the longitudinal suscep-
tibility upon doping, practically no variation of the transverse
susceptibilities has been observed experimentally.9
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B. Transverse magnetic field, �a and �c

For a transverse magnetic field B� �e�b, the “impurity” en-
ergy given by Eqs. �7�, �23�, and �24� reads

E =
1

2
� d2r	
s
����r��2 + 2�2g�e�b � d��
�r��eb · �����r�

+ ��
B� · ���r��2 − 
B� · ���r��
d�� · ���r��
�r�
 . �29�

In this case, d� =0 and d� =d��, which maximizes the “impu-
rity” dipole moment and hence minimizes the energy. Let us

write the �� field as

���r� = �� �0��r� + �� �1��r� , �30�

where �� �0� is the solution for B� =0 given by Eq. �9� and �� �1� is
the perturbation induced by the magnetic field. Performing

the variation of the energy �29� with respect to �� �1� yields the
equation

− 	�� �1��r� −
1

2
s
	B� 
d�� · ���r�� + d��
B� · ���r��

�r� = 0.

Using the explicit form of �� �0� given by Eq. �9� �we also set
M�=0� we then find the magnetic field induced part of the
spiral

��q
�1� = − i

�2M
2�
s

d��B� · m� �
Eeb · q

q4

�� 2�

�4�2 + q2
+

2�q2

�16�2 + q2�3/2 −
4�

�16�2 + q2� .

Substitution of this solution together with �9� in Eq. �30� and
then in Eq. �29� gives the total energy and hence the “impu-
rity” susceptibility. After multiplication by the hole concen-
tration x, we find the variation of the bulk susceptibilities

��a = �−
��M2

4�
ln�0.6�

Ma
� + 0.0043

�2M2

4�3
s
�x � − 10x��,

��c = 0.0043
�2M2

4�3
s
x � 0.02x��, �31�

where we have used the fact that �� �e�a. The term �B� ·���2 in
�29� is thus only present for a magnetic field directed along

the a axis. Such a small variation of the susceptibilities upon
doping is quite consistent with experiments.9

VIII. CONCLUSION

In the present work based on the spiral solution of the
extended t-J model, we explained the following properties of
underdoped La2−xSrxCuO4:

�1� The pinning of the incommensurate magnetic structure
to the orthorhombic b direction observed in neutron scatter-
ing in the insulating phase, x�0.055. The pinning is due to
the anisotropy of the diagonal hopping matrix element t�; see
Sec. II.

�2� The positions and shapes of the incommensurate elas-
tic neutron scattering peaks in the Néel phase, x�0.02. Ex-
perimental data are presented in Fig. 7, together with our
theoretical curves, containing no fitting parameters at all. The
agreement between theory and experiments is quite remark-
able.

�3� The doping dependence of the Dzyaloshinski-Moriya
induced spin-wave gap in the Néel phase, see Eq. �22�. Ac-
cording to our calculation, at 1% doping, the gap is reduced
by 26% compared to its value in the undoped compound.
This is in very good agreement with the experimentally ob-
served reduction of 28%.

�4� The doping dependence of the uniform magnetic sus-
ceptibilities at zero temperature, see Eqs. �28� and �31�. This
explains the tremendous variation of the longitudinal mag-
netic susceptibility �b and the very weak change in the trans-
verse susceptibilities �a and �c.
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